Modern physics : (Record no. 15388)

MARC details
000 -LEADER
fixed length control field 11468cam a22004575a 4500
001 - ACCESSION NUMBER
control field 19308
003 - CONTROL NUMBER IDENTIFIER
control field CUTN
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20150708150102.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 130716t20132013enka b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2012554964
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781848168787 (cloth)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1848168780 (cloth)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781848168794 (pbk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1848168799 (pbk.)
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.12
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Pfeffer, Jeremy I.
245 10 - TITLE STATEMENT
Title Modern physics :
Remainder of title an introductory text /
Statement of responsibility, etc Jeremy I. Pfeffer, Shlomo Nir, Hebrew University of Jerusalem, israel.
250 ## - EDITION STATEMENT
Edition statement 2nd edition.
300 ## - PHYSICAL DESCRIPTION
Extent xviii, 655 pages :
Other physical details illustrations ;
Dimensions 25 cm
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: pt. One The Birth of a New Physics -- 1.1. The Electron -- 1.2. Electromagnetic Waves -- 1.2.1. The Production and roperties of Electromagnetic Waves -- 1.2.2. The Limits of Electromagnetic Theory -- 1.3. The Reality of Atoms --- Brownian Motion -- 1.3.1. Statistical Mechanics -- Example 1.1 The Kinetic Theory of Gases -- Example 1.2 The Barometric (or Laplace) Formula -- 1.3.2. Brownian Motion -- 1.3.3. Sedimentation Equilibrium -- 1.3.4. The Reality of Atoms -- Example 1.3 The Mean Square Displacement of a Brownian Particle -- 1.4. The Special Theory of Relativity -- 1.4.1. The Principle of Covariance -- 1.4.2. The Newtonian Conception of Motion -- Example 1.4 The Galilean Transformation -- Example 1.5 The Speed of Sound Relative to a Moving Observer -- 1.4.3. The Michelson-Morley Experiment -- 1.4.4. The Postulates of the Special Theory of Relativity -- 1.4.5. Simultaneity and the Relativity of Time -- 1.4.6. The Lorentz Transformation.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: Example 1.6 The Lorentz Transformation and Special Relativity -- 1.4.7. Relativistic Mechanics -- Kinematics -- Example 1.7 The Mystery of the Muons -- Example 1.8 Stationary Clocks and Moving Clocks -- Example 1.9 The Minkowski Diagrams of Different Observers -- the Twins Paradox -- 1.4.8. Relativistic Mechanics -- Dynamics -- Example 1.10 Calculations in Relativistic Mechanics -- Example 1.11 Transformation of Momentum and Energy -- 1.4.9. Magnetism -- A Relativistic Effect -- 1.5. The General Theory of Relativity -- 1.5.1. The Postulates of the General Theory of Relativity -- 1.5.2. Gravitation and the General Theory of Relativity -- 1.5.3. Gravity and Geometry -- 1.6. Appendices to Part One -- 1.6.1. Velocity Addition in Special Relativity -- 1.6.2. The Kinetic Energy of a Particle in Special Relativity -- 1.6.3. The Total Energy of a Particle -- 1.6.4. The Transformation of Force -- pt. One Questions, Exercises and Problems -- pt. Two Quantum Theory.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 2.1. The Quantum Hypothesis -- 2.1.1. Radiators and Radiation -- 2.1.2. Thermal Radiation -- 2.1.3. Black-body Radiation -- Example 2.1 Wien's Law -- Example 2.2 Black-body Radiation and Astronomy -- 2.1.4. Difficulties in the Classical Theory of Radiation -- Example 2.3 The Frequencies in Cavity Radiation -- 2.1.5. Planck's Quantum Hypothesis -- 2.1.6. Atomic Spectra -- 2.1.7. The Franck-Hertz Experiment -- 2.2. The Photoelectric Effect -- 2.2.1. The Photoelectric Effect -- The Problem -- 2.2.2. Einstein's Equation -- Example 2.4 Photons and Wavelengths -- Example 2.5 Counting Photons -- 2.2.3. Planck's Constant -- Example 2.6 Photoelectrons -- 2.2.4.X-rays -- Example 2.7 Minimum X-ray Wavelengdi -- 2.2.5.X-rays and Crystallography -- Example 2.8 X-ray Crystallography -- 2.3. Photons -- 2.3.1. Photon Mass -- Example 2.9 Radiation Pressure -- 2.3.2. The Compton Effect -- Example 2.10 The Compton Wavelength -- 2.3.3. Photons -- Light Particles.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 2.3.4. The Locality Paradox -- Example 2.11 Photons and Interference Patterns -- 2.4. The Mechanics of Minute Particles -- 2.4.1. De Broglie's Hypothesis -- Example 2.12 Electron Diffraction -- Thomson's Experiment -- 2.4.2. Heisenberg's Uncertainty Principle -- Example 2.13 Heisenberg's Uncertainty Principle -- 2.4.3. Matter Waves -- 2.4.4. Wave Functions and Probability Amplitudes -- 2.4.5. The Wave Function of a Free Particle -- 2.4.6. Quantum Mechanics -- Schrodinger's Equation -- 2.4.7. Quantum Mechanics -- Potential Wells -- 2.4.8. The Tunnel Effect -- 2.5. Appendices to Part Two -- 2.5.1. The Kinetic Energy and Linear Momentum of a Particle -- 2.5.2. The Wave Function of a Trapped Particle -- pt. Two Questions, Exercises and Problems -- pt. Three The Nuclear Atom -- 3.1. The Structure of the Atom -- 3.1.1. The Thomson Model of the Atom -- 3.1.2. The Nuclear Atom -- Example 3.1 The Atomic Nucleus -- 3.2. The Bohr Model of the Atom -- 3.2.1. The Hydrogen Atom.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: Example 3.2 Spectral Transitions -- Example 3.3 The Correspondence Principle -- Example 3.4 The Bohr Atom and De Broglie's Principle -- 3.2.2. The Zeeman Effect -- Space Quantisation -- 3.2.3. Moseley's Experiment -- Example 3.5 The Characteristic X-ray Spectrum of Copper -- 3.3. The Quantum Mechanical Model of the Atom -- 3.3.1. The Hydrogen Atom -- Example 3.6 The Average Distance of the Electron from the Hydrogen Nucleus -- Example 3.7 The Probability of Finding an Electron -- 3.3.2. Atomic Spectra and Quantum Mechanics -- 3.4. Electron Spin -- 3.4.1. Electron Spin -- 3.4.2. The Stem-Gerlach Experiment -- Example 3.8 Electron Spin Resonance -- 3.4.3. Spin-Orbit Coupling -- 3.4.4. The Pauli Exclusion Principle and the Periodic Table -- 3.4.5. Spin, Identical Particles and Pauli's Principle -- 3.4.6. Total Spin and the Energy Levels in Atoms -- 3.4.7. The Energy Levels in Multi-electron Atoms -- 3.4.8. Total Spin and the Energy Levels in Molecules.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 3.5. Appendices to Part Three -- 3.5.1. The Energy of an Orbiting Charged Particle -- 3.5.2. The Schrodinger Equation for the Hydrogen Atom -- 3.5.3. The Angular Momentum of an Orbiting Particle -- pt. Three Questions, Exercises and Problems -- pt. Four Interactions of Electromagnetic Radiation and Matter -- 4.1. The Passage of Radiation through Matter -- 4.1.1. The Attenuation of Radiation by Matter -- Example 4.1 The Attenuation of Ultra-Violet Radiation by a Glass Sheet -- 4.1.2. Mechanisms of the Absorption of Radiation -- 4.2. Molecular Spectra -- 4.2.1. Molecular Energies -- 4.2.2. Rotational Spectra -- Example 4.2 The Interatomic Distance in the HC1 Molecule -- 4.2.3. Vibrational Spectra -- Example 4.3 Vibrational Spectrum of CO -- 4.2.4. Electronic Spectra -- Example 4.4 The Excitation of [pi] Electrons -- 4.2.5. Raman Spectra -- 4.3. Fluorescence and Phosphorescence -- 4.3.1. Fluorescence in Biological Systems -- 4.4. Quantum Electrodynamics.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 4.4.1. The Fine Structure Constant -- 4.4.2. The Strange Theory of Light and Matter -- 4.4.3. Renormalisation -- 4.4.4. Quantum Electrodynamics: Reality or Fancy -- 4.5. Appendices to Part Four -- 4.5.1. Rayleigh Scattering -- 4.5.2. Moment of Inertia of a Diatomic Molecule -- pt. Four Questions, Exercises and Problems -- pt. Five Nuclear Physics -- 5.1. The Structure of the Nucleus -- 5.1.1. Nucleons -- 5.1.2. Nuclear Nomenclature -- 5.1.3. Nuclear Masses; Isotopes -- Example 5.1 The Density of Nuclear Material -- 5.1.4. Nuclear Binding Energy -- Example 5.2 Binding Energy Per Nucleon -- Example 5.3 Nuclear Magic Numbers -- 5.1.5. The Nuclear (`Strong') Force -- 5.1.6. Nuclear Models -- 5.1.7. The Elementary Particles of Matter -- 5.2. Nuclear Radiations -- 5.2.1. The Nature of the Nuclear Radiations -- 5.2.2. Mechanisms of Nuclear Radiation Attenuation -- 5.2.3. Detectors of Ionising Radiation -- 5.2.4. The Biological Effects of Nuclear Radiation.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 5.3. Radioactivity, Neutrinos and the Standard Model -- 5.3.1. The Disintegration of Unstable Nuclei -- Example 5.4 Disintegration Energy -- 5.3.2. The Kinetics of Radioactive Disintegration -- Example 5.5 Radioactive Disintegration -- 5.3.3. Age Determination with Radioisotopes -- Example 5.6 Carbon-14 Dating -- 5.3.4. Uses of Radioisotopes -- Example 5.7 Dosimetry -- 5.3.5. The Factors Affecting Nuclear Stability -- Example 5.8 Possible Disintegration Modes of Heavy Nuclei -- 5.3.6. The Mechanism of [alpha] Decay -- 5.3.7. The Mechanism of [beta] Decay -- Weak Charge -- 5.4. Nuclear Reactions and Nuclear Energy -- 5.4.1. Nuclear Reactions -- 5.4.2. The Discovery of the Neutron -- 5.4.3. Nuclear Cross-Sections -- Example 5.9 Nuclear Cross-Sections -- 5.4.4. Nuclear Energy -- Fusion and Fission -- Example 5.10 Endoergic Nuclear Reactions -- 5.4.5. Nuclear Fusion -- 5.4.6. Nuclear Fission -- 5.4.7. Nuclear Chain Reactions -- 5.4.8. Fission by Fast Neutrons -- Bombs.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 5.4.9. Fission by Slow Neutrons -- Nuclear Reactors -- Example 5.11 The Slow Neutron Chain Reaction of Natural Uranium -- 5.4.10. Nuclear Engineering: The Chernobyl and Fukushima Catastrophes -- 5.5. Appendices to Part Five -- 5.5.1. The Mean Lifetime of a Radioactive Nucleus -- 5.5.2. Radioactive Decays of the Type A [b2s! B [b2s! C -- pt. Five Questions, Exercises and Problems -- pt. Six Selected Topics -- 6.1. The Laser -- 6.1.1. The Spontaneous and Stimulated Emission of Radiation -- 6.1.2. Laser Action -- 6.1.3. The Ruby Laser -- 6.1.4. The Helium-Neon Laser -- 6.1.5. Laser Applications -- 6.2. The Mossbauer Effect -- 6.2.1. The Width of Spectral Lines -- Example 6.1 The Width of Spectral Lines -- 6.2.2. The Mechanics of Photon Emission and Absorption -- 6.2.3. Recoilless Emission and Absorption -- 6.2.4. The Gravitational Shift -- Black Holes -- 6.3. Nuclear Magnetic Resonance -- 6.3.1. Magnetism and Angular Momentum -- 6.3.2. Nuclear Magnetic Moments.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: 6.3.3. Nuclear Magnetic Resonance -- 6.3.4. Observing Nucleax Magnetic Resonance -- 6.3.5. Chemical Shift -- 6.3.6. Applications of Nuclear Magnetic Resonance -- 6.4. The Conduction of Electricity Through Solids -- 6.4.1. The Electrical Conductivity of Solids -- 6.4.2. The Electron Gas -- Example 6.2 The Relaxation Time of Conduction Electrons -- 6.4.3. Energy Levels in Solids -- Band Theory -- 6.4.4. Insulators -- 6.4.5. Metallic Conductors -- Example 6.3 The Velocity of Conducting Electrons -- Example 6.4 The Mean Path-length of the Conduction Electrons -- 6.4.6. Superconductivity -- 6.4.7. Semiconductors -- 6.4.8. The p-n Junction -- 6.4.9. Semiconductor Devices -- 6.5. Invariance, Symmetry and Conservation Laws -- 6.5.1. The Symmetry of the Laws of Physics -- 6.5.2. Group Theory -- 6.5.3. Noether's Theorem -- 6.5.4. The Conservation Laws of Particle Physics -- 6.6. Appendices to Part Six -- 6.6.1. The Probabilities of Stimulated and Spontaneous Emission.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: pt. Six Questions, Exercises and Problems -- Supplementary Topics -- A. The Mathematical Description of Wave Motion -- A.1. The Principle of Superposition -- B. List of Physical Constants and Conversion Factors -- C. The Greek Alphabet.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Physics
Form subdivision Textbooks.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Physics
Form subdivision Problems, exercises, etc.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Nir, Shlomo.
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 0
b ibc
c origcop
d 2
e ncip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type General Books
Holdings
Date last seen Total Checkouts Total Renewals Full call number Barcode Date checked out Copy number Price effective from Koha item type Lost status Source of classification or shelving scheme Damaged status Not for loan Withdrawn status Home library Current library Shelving location Date acquired
19/11/2022 12 17 530.12 19308 03/11/2022 1 08/07/2015 General Books   Dewey Decimal Classification       CUTN Central Library CUTN Central Library Sciences 08/07/2015

Powered by Koha