Amazon cover image
Image from Amazon.com
Image from Google Jackets

Quantum information, computation and communication / Jonathan A. Jones & Dieter Jaksch.

By: Contributor(s): Material type: TextTextLanguage: English Publication details: New York : Cambridge University Press, 2012.Description: viii, 200 p. : ill. ; 26 cmISBN:
  • 9781107014466 (hardback)
Subject(s): DDC classification:
  • 004.1 23 JON
Other classification:
  • SCI057000
Online resources:
Contents:
Machine generated contents note: Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.
Summary: "Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols, and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics. Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, this textbook guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make the textbook useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at www.cambridge.org/9781107014466"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
General Books General Books CUTN Central Library Generalia Non-fiction 004.1 JON (Browse shelf(Opens below)) Available 40126
Browsing CUTN Central Library shelves, Shelving location: Generalia, Collection: Non-fiction Close shelf browser (Hides shelf browser)
004.097 NAI Informatics 004.097 NAI Informatics 004.097 NAI Informatics 004.1 JON Quantum information, computation and communication / 004.1 NIE Quantum computation and quantum information 004.21 CLA Model Checking 004.21 CLA Model Checking

Machine generated contents note: Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.

"Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols, and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics. Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, this textbook guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make the textbook useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at www.cambridge.org/9781107014466"--

There are no comments on this title.

to post a comment.

Powered by Koha