Normal view MARC view ISBD view

Handbook of machine learning Tshilidzi Marwala (University of Johannesburg, South Africa).

By: Marwala, Tshilidzi | , 1971- [author.].
Material type: materialTypeLabelBookDescription: volumes : illustrations ; 25 cm.ISBN: 9789813271227 (hc : alk. paper : v. 1); 9813271221 (hc : alk. paper : v. 1).Subject(s): Machine learning | Artificial intelligenceDDC classification: 006.31
Contents:
volume 1. Foundation of artificial intelligence -- Contents Preface About the Author Acknowledgements 1. Introduction 1.1 Introduction 1.2 Time Domain Data 1.2.1 Average 1.2.2 Variance 1.2.3 Kurtosis 1.3 Frequency Domain 1.4 Time–Frequency Domain 1.5 Fractals 1.6 Stationarity 1.7 Common Mistakes on Handling Data 1.8 Outline of the Book 1.9 Conclusions References 2. Multi-layer Perceptron 2.1 Introduction 2.2 Multi-layer Perceptron 2.3 Training the Multi-layered Perceptron 2.4 Back-propagation Method 2.5 Scaled Conjugate Method 2.6 Multi-layer Perceptron Classifier 2.7 Applications to Economic Modelling 2.8 Application to a Steam Generator 2.9 Application to Cylindrical Shells 2.10 Application to Interstate Conflict 2.11 Conclusions References 3. Radial Basis Function 3.1 Introduction 3.2 Radial Basis Function 3.3 Model Selection 3.4 Application to Interstate Conflict 3.5 Call Behaviour Classification 3.6 Modelling the CPI 3.7 Modelling Steam Generator 3.8 Conclusions References 4. Automatic Relevance Determination 4.1 Introduction 4.2 Mathematical Basis of the Automatic Relevance Determination 4.2.1 Neural networks 4.2.2 Bayesian framework 4.2.3 Automatic relevance determination 4.3 Application to Interstate Conflict 4.4 Applications of ARD in Inflation Modelling 4.5 Conclusions References 5. Bayesian Networks 5.1 Introduction 5.2 Neural Networks 5.3 Hybrid Monte Carlo 5.4 Shadow Hybrid Monte Carlo (SHMC) Method 5.5 Separable Shadow Hybrid Monte Carlo 5.6 Comparison of Sampling Methods 5.7 Interstate Conflict 5.8 Conclusions References 6. Support Vector Machines 6.1 Introduction 6.2 Support Vector Machines for Classification 6.3 Support Vector Regression 6.4 Conflict Modelling 6.5 Steam Generator 6.6 Conclusions References 7. Fuzzy Logic 7.1 Introduction 7.2 Fuzzy Logic Theory 7.3 Neuro-fuzzy Models 7.4 Steam Generator 7.5 Interstate Conflict 7.6 Conclusions References 8. Rough Sets 8.1 Introduction 8.2 Rough Sets 8.2.1 Information system 8.2.2 The indiscernibility relation 8.2.3 Information table and data representation 8.2.4 Decision rules induction 8.2.5 The lower and upper approximation of sets 8.2.6 Set approximation 8.2.7 The reduct 8.2.8 Boundary region 8.2.9 Rough membership functions 8.3 Discretization Methods 8.3.1 Equal-width-bin (EWB) partitioning 8.3.2 Equal-frequency-bin (EFB) partitioning 8.4 Rough Set Formulation 8.5 Rough Sets vs. Fuzzy Sets 8.6 Multi-layer Perceptron Model 8.7 Neuro-rough Model 8.7.1 Bayesian training on rough sets 8.7.2 Markov Chain Monte Carlo (MCMC) 8.8 Modelling of HIV 8.9 Application to Modelling the Stock Market 8.10 Interstate Conflict 8.11 Conclusions References 9. Hybrid Machines 9.1 Introduction 9.2 Hybrid Machine 9.2.1 Bayes optimal classifier 9.2.2 Bayesian model averaging 9.2.3 Bagging 9.2.4 Boosting 9.2.5 Stacking 9.2.6 Evolutionary machines 9.3 Theory of Hybrid Networks 9.3.1 Equal weights 9.3.2 Variable weights 9.4 Condition Monitoring 9.5 Caller Behaviour 9.6 Conclusions References 10. Auto-associative Networks 10.1 Introduction 10.2 Auto-associative Networks 10.3 Principal Component Analysis 10.4 Missing Data Estimation 10.5 Genetic Algorithm(GA) 10.6 Machine Learning 10.7 Modelling HIV 10.8 Artificial Beer Taster 10.9 Conclusions References 11. Evolving Networks 11.1 Introduction 11.2 Machine Learning 11.3 Genetic Algorithm 11.4 Learn++ Method 11.5 Incremental Learning Method Using Genetic Algorithm (ILUGA) 11.6 Optical Character Recognition (OCR) 11.7 Wine Recognition 11.8 Financial Analysis 11.9 Condition Monitoring of Transformers 11.10 Conclusions References 12. Causality 12.1 Introduction 12.2 Correlation 12.3 Causality 12.4 Theories of Causality 12.4.1 Transmission theory of causality 12.4.2 Probability theory of causality 12.4.3 Projectile theory of causality 12.4.4 Causal calculus and structural learning 12.4.5 Granger causality 12.4.6 Structural learning 12.4.7 Manipulation theory 12.4.8 Process theory 12.4.9 Counter factual theory 12.4.10 Neyman–Rubin causal model 12.4.11 Causal calculus 12.4.12 Inductive causation (IC) 12.5 How to Detect Causation? 12.6 Causality and Artificial Intelligence 12.7 Causality and Rational Decision 12.8 Conclusions References 13. Gaussian Mixture Models 13.1 Introduction 13.2 Gaussian Mixture Models 13.3 EM Algorithm 13.4 Condition Monitoring: Transformer Bushings 13.5 Condition Monitoring: Cylindrical Shells 13.6 Condition Monitoring: Bearings 13.7 Conclusions References 14. Hidden Markov Models 14.1 Introduction 14.2 Hidden Markov Models 14.3 Condition Monitoring: Motor Bearing Faults 14.4 Speaker Recognition 14.5 Conclusions References 15. Reinforcement Learning 15.1 Introduction 15.2 Reinforcement Learning: TD-Lambda 15.3 Game Theory 15.4 Multi-agent Systems 15.5 Modelling the Game of Lerpa 15.6 Modelling of Tic–Tac–Toe 15.7 Conclusions References 16. Conclusion Remarks 16.1 Summary of the Book 16.2 Implications of Artificial Intelligence References Index
Summary: This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Reference Books Reference Books CUTN Central Library

This is a searchable open catalogue of all library of the Central University of Tamil Nadu.

Reference
Non-fiction 006.31 MAR (Browse shelf) Not for loan 44010

volume 1. Foundation of artificial intelligence -- Contents
Preface
About the Author
Acknowledgements
1. Introduction
1.1 Introduction
1.2 Time Domain Data
1.2.1 Average
1.2.2 Variance
1.2.3 Kurtosis
1.3 Frequency Domain
1.4 Time–Frequency Domain
1.5 Fractals
1.6 Stationarity
1.7 Common Mistakes on Handling Data
1.8 Outline of the Book
1.9 Conclusions
References
2. Multi-layer Perceptron
2.1 Introduction
2.2 Multi-layer Perceptron
2.3 Training the Multi-layered Perceptron
2.4 Back-propagation Method
2.5 Scaled Conjugate Method
2.6 Multi-layer Perceptron Classifier
2.7 Applications to Economic Modelling
2.8 Application to a Steam Generator
2.9 Application to Cylindrical Shells
2.10 Application to Interstate Conflict
2.11 Conclusions
References
3. Radial Basis Function
3.1 Introduction
3.2 Radial Basis Function
3.3 Model Selection
3.4 Application to Interstate Conflict
3.5 Call Behaviour Classification
3.6 Modelling the CPI
3.7 Modelling Steam Generator
3.8 Conclusions
References
4. Automatic Relevance Determination
4.1 Introduction
4.2 Mathematical Basis of the Automatic Relevance Determination
4.2.1 Neural networks
4.2.2 Bayesian framework
4.2.3 Automatic relevance determination
4.3 Application to Interstate Conflict
4.4 Applications of ARD in Inflation Modelling
4.5 Conclusions
References
5. Bayesian Networks
5.1 Introduction
5.2 Neural Networks
5.3 Hybrid Monte Carlo
5.4 Shadow Hybrid Monte Carlo (SHMC) Method
5.5 Separable Shadow Hybrid Monte Carlo
5.6 Comparison of Sampling Methods
5.7 Interstate Conflict
5.8 Conclusions
References
6. Support Vector Machines
6.1 Introduction
6.2 Support Vector Machines for Classification
6.3 Support Vector Regression
6.4 Conflict Modelling
6.5 Steam Generator
6.6 Conclusions
References
7. Fuzzy Logic
7.1 Introduction
7.2 Fuzzy Logic Theory
7.3 Neuro-fuzzy Models
7.4 Steam Generator
7.5 Interstate Conflict
7.6 Conclusions
References
8. Rough Sets
8.1 Introduction
8.2 Rough Sets
8.2.1 Information system
8.2.2 The indiscernibility relation
8.2.3 Information table and data representation
8.2.4 Decision rules induction
8.2.5 The lower and upper approximation of sets
8.2.6 Set approximation
8.2.7 The reduct
8.2.8 Boundary region
8.2.9 Rough membership functions
8.3 Discretization Methods
8.3.1 Equal-width-bin (EWB) partitioning
8.3.2 Equal-frequency-bin (EFB) partitioning
8.4 Rough Set Formulation
8.5 Rough Sets vs. Fuzzy Sets
8.6 Multi-layer Perceptron Model
8.7 Neuro-rough Model
8.7.1 Bayesian training on rough sets
8.7.2 Markov Chain Monte Carlo (MCMC)
8.8 Modelling of HIV
8.9 Application to Modelling the Stock Market
8.10 Interstate Conflict
8.11 Conclusions
References
9. Hybrid Machines
9.1 Introduction
9.2 Hybrid Machine
9.2.1 Bayes optimal classifier
9.2.2 Bayesian model averaging
9.2.3 Bagging
9.2.4 Boosting
9.2.5 Stacking
9.2.6 Evolutionary machines
9.3 Theory of Hybrid Networks
9.3.1 Equal weights
9.3.2 Variable weights
9.4 Condition Monitoring
9.5 Caller Behaviour
9.6 Conclusions
References
10. Auto-associative Networks
10.1 Introduction
10.2 Auto-associative Networks
10.3 Principal Component Analysis
10.4 Missing Data Estimation
10.5 Genetic Algorithm(GA)
10.6 Machine Learning
10.7 Modelling HIV
10.8 Artificial Beer Taster
10.9 Conclusions
References
11. Evolving Networks
11.1 Introduction
11.2 Machine Learning
11.3 Genetic Algorithm
11.4 Learn++ Method
11.5 Incremental Learning Method Using Genetic Algorithm (ILUGA)
11.6 Optical Character Recognition (OCR)
11.7 Wine Recognition
11.8 Financial Analysis
11.9 Condition Monitoring of Transformers
11.10 Conclusions
References
12. Causality
12.1 Introduction
12.2 Correlation
12.3 Causality
12.4 Theories of Causality
12.4.1 Transmission theory of causality
12.4.2 Probability theory of causality
12.4.3 Projectile theory of causality
12.4.4 Causal calculus and structural learning
12.4.5 Granger causality
12.4.6 Structural learning
12.4.7 Manipulation theory
12.4.8 Process theory
12.4.9 Counter factual theory
12.4.10 Neyman–Rubin causal model
12.4.11 Causal calculus
12.4.12 Inductive causation (IC)
12.5 How to Detect Causation?
12.6 Causality and Artificial Intelligence
12.7 Causality and Rational Decision
12.8 Conclusions
References
13. Gaussian Mixture Models
13.1 Introduction
13.2 Gaussian Mixture Models
13.3 EM Algorithm
13.4 Condition Monitoring: Transformer Bushings
13.5 Condition Monitoring: Cylindrical Shells
13.6 Condition Monitoring: Bearings
13.7 Conclusions
References
14. Hidden Markov Models
14.1 Introduction
14.2 Hidden Markov Models
14.3 Condition Monitoring: Motor Bearing Faults
14.4 Speaker Recognition
14.5 Conclusions
References
15. Reinforcement Learning
15.1 Introduction
15.2 Reinforcement Learning: TD-Lambda
15.3 Game Theory
15.4 Multi-agent Systems
15.5 Modelling the Game of Lerpa
15.6 Modelling of Tic–Tac–Toe
15.7 Conclusions
References
16. Conclusion Remarks
16.1 Summary of the Book
16.2 Implications of Artificial Intelligence
References
Index

This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.

Includes bibliographical references and index.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha