000 11468cam a22004575a 4500
001 19308
003 CUTN
005 20150708150102.0
008 130716t20132013enka b 001 0 eng
010 _a 2012554964
020 _a9781848168787 (cloth)
020 _a1848168780 (cloth)
020 _a9781848168794 (pbk.)
020 _a1848168799 (pbk.)
040 _aDLC
_beng
_erda
_cDLC
042 _apcc
082 _a530.12
100 1 _aPfeffer, Jeremy I.
245 1 0 _aModern physics :
_ban introductory text /
_cJeremy I. Pfeffer, Shlomo Nir, Hebrew University of Jerusalem, israel.
250 _a2nd edition.
300 _axviii, 655 pages :
_billustrations ;
_c25 cm
504 _aIncludes bibliographical references and index.
505 0 _aMachine generated contents note: pt. One The Birth of a New Physics -- 1.1. The Electron -- 1.2. Electromagnetic Waves -- 1.2.1. The Production and roperties of Electromagnetic Waves -- 1.2.2. The Limits of Electromagnetic Theory -- 1.3. The Reality of Atoms --- Brownian Motion -- 1.3.1. Statistical Mechanics -- Example 1.1 The Kinetic Theory of Gases -- Example 1.2 The Barometric (or Laplace) Formula -- 1.3.2. Brownian Motion -- 1.3.3. Sedimentation Equilibrium -- 1.3.4. The Reality of Atoms -- Example 1.3 The Mean Square Displacement of a Brownian Particle -- 1.4. The Special Theory of Relativity -- 1.4.1. The Principle of Covariance -- 1.4.2. The Newtonian Conception of Motion -- Example 1.4 The Galilean Transformation -- Example 1.5 The Speed of Sound Relative to a Moving Observer -- 1.4.3. The Michelson-Morley Experiment -- 1.4.4. The Postulates of the Special Theory of Relativity -- 1.4.5. Simultaneity and the Relativity of Time -- 1.4.6. The Lorentz Transformation.
505 0 _aContents note continued: Example 1.6 The Lorentz Transformation and Special Relativity -- 1.4.7. Relativistic Mechanics -- Kinematics -- Example 1.7 The Mystery of the Muons -- Example 1.8 Stationary Clocks and Moving Clocks -- Example 1.9 The Minkowski Diagrams of Different Observers -- the Twins Paradox -- 1.4.8. Relativistic Mechanics -- Dynamics -- Example 1.10 Calculations in Relativistic Mechanics -- Example 1.11 Transformation of Momentum and Energy -- 1.4.9. Magnetism -- A Relativistic Effect -- 1.5. The General Theory of Relativity -- 1.5.1. The Postulates of the General Theory of Relativity -- 1.5.2. Gravitation and the General Theory of Relativity -- 1.5.3. Gravity and Geometry -- 1.6. Appendices to Part One -- 1.6.1. Velocity Addition in Special Relativity -- 1.6.2. The Kinetic Energy of a Particle in Special Relativity -- 1.6.3. The Total Energy of a Particle -- 1.6.4. The Transformation of Force -- pt. One Questions, Exercises and Problems -- pt. Two Quantum Theory.
505 0 _aContents note continued: 2.1. The Quantum Hypothesis -- 2.1.1. Radiators and Radiation -- 2.1.2. Thermal Radiation -- 2.1.3. Black-body Radiation -- Example 2.1 Wien's Law -- Example 2.2 Black-body Radiation and Astronomy -- 2.1.4. Difficulties in the Classical Theory of Radiation -- Example 2.3 The Frequencies in Cavity Radiation -- 2.1.5. Planck's Quantum Hypothesis -- 2.1.6. Atomic Spectra -- 2.1.7. The Franck-Hertz Experiment -- 2.2. The Photoelectric Effect -- 2.2.1. The Photoelectric Effect -- The Problem -- 2.2.2. Einstein's Equation -- Example 2.4 Photons and Wavelengths -- Example 2.5 Counting Photons -- 2.2.3. Planck's Constant -- Example 2.6 Photoelectrons -- 2.2.4.X-rays -- Example 2.7 Minimum X-ray Wavelengdi -- 2.2.5.X-rays and Crystallography -- Example 2.8 X-ray Crystallography -- 2.3. Photons -- 2.3.1. Photon Mass -- Example 2.9 Radiation Pressure -- 2.3.2. The Compton Effect -- Example 2.10 The Compton Wavelength -- 2.3.3. Photons -- Light Particles.
505 0 _aContents note continued: 2.3.4. The Locality Paradox -- Example 2.11 Photons and Interference Patterns -- 2.4. The Mechanics of Minute Particles -- 2.4.1. De Broglie's Hypothesis -- Example 2.12 Electron Diffraction -- Thomson's Experiment -- 2.4.2. Heisenberg's Uncertainty Principle -- Example 2.13 Heisenberg's Uncertainty Principle -- 2.4.3. Matter Waves -- 2.4.4. Wave Functions and Probability Amplitudes -- 2.4.5. The Wave Function of a Free Particle -- 2.4.6. Quantum Mechanics -- Schrodinger's Equation -- 2.4.7. Quantum Mechanics -- Potential Wells -- 2.4.8. The Tunnel Effect -- 2.5. Appendices to Part Two -- 2.5.1. The Kinetic Energy and Linear Momentum of a Particle -- 2.5.2. The Wave Function of a Trapped Particle -- pt. Two Questions, Exercises and Problems -- pt. Three The Nuclear Atom -- 3.1. The Structure of the Atom -- 3.1.1. The Thomson Model of the Atom -- 3.1.2. The Nuclear Atom -- Example 3.1 The Atomic Nucleus -- 3.2. The Bohr Model of the Atom -- 3.2.1. The Hydrogen Atom.
505 0 _aContents note continued: Example 3.2 Spectral Transitions -- Example 3.3 The Correspondence Principle -- Example 3.4 The Bohr Atom and De Broglie's Principle -- 3.2.2. The Zeeman Effect -- Space Quantisation -- 3.2.3. Moseley's Experiment -- Example 3.5 The Characteristic X-ray Spectrum of Copper -- 3.3. The Quantum Mechanical Model of the Atom -- 3.3.1. The Hydrogen Atom -- Example 3.6 The Average Distance of the Electron from the Hydrogen Nucleus -- Example 3.7 The Probability of Finding an Electron -- 3.3.2. Atomic Spectra and Quantum Mechanics -- 3.4. Electron Spin -- 3.4.1. Electron Spin -- 3.4.2. The Stem-Gerlach Experiment -- Example 3.8 Electron Spin Resonance -- 3.4.3. Spin-Orbit Coupling -- 3.4.4. The Pauli Exclusion Principle and the Periodic Table -- 3.4.5. Spin, Identical Particles and Pauli's Principle -- 3.4.6. Total Spin and the Energy Levels in Atoms -- 3.4.7. The Energy Levels in Multi-electron Atoms -- 3.4.8. Total Spin and the Energy Levels in Molecules.
505 0 _aContents note continued: 3.5. Appendices to Part Three -- 3.5.1. The Energy of an Orbiting Charged Particle -- 3.5.2. The Schrodinger Equation for the Hydrogen Atom -- 3.5.3. The Angular Momentum of an Orbiting Particle -- pt. Three Questions, Exercises and Problems -- pt. Four Interactions of Electromagnetic Radiation and Matter -- 4.1. The Passage of Radiation through Matter -- 4.1.1. The Attenuation of Radiation by Matter -- Example 4.1 The Attenuation of Ultra-Violet Radiation by a Glass Sheet -- 4.1.2. Mechanisms of the Absorption of Radiation -- 4.2. Molecular Spectra -- 4.2.1. Molecular Energies -- 4.2.2. Rotational Spectra -- Example 4.2 The Interatomic Distance in the HC1 Molecule -- 4.2.3. Vibrational Spectra -- Example 4.3 Vibrational Spectrum of CO -- 4.2.4. Electronic Spectra -- Example 4.4 The Excitation of [pi] Electrons -- 4.2.5. Raman Spectra -- 4.3. Fluorescence and Phosphorescence -- 4.3.1. Fluorescence in Biological Systems -- 4.4. Quantum Electrodynamics.
505 0 _aContents note continued: 4.4.1. The Fine Structure Constant -- 4.4.2. The Strange Theory of Light and Matter -- 4.4.3. Renormalisation -- 4.4.4. Quantum Electrodynamics: Reality or Fancy -- 4.5. Appendices to Part Four -- 4.5.1. Rayleigh Scattering -- 4.5.2. Moment of Inertia of a Diatomic Molecule -- pt. Four Questions, Exercises and Problems -- pt. Five Nuclear Physics -- 5.1. The Structure of the Nucleus -- 5.1.1. Nucleons -- 5.1.2. Nuclear Nomenclature -- 5.1.3. Nuclear Masses; Isotopes -- Example 5.1 The Density of Nuclear Material -- 5.1.4. Nuclear Binding Energy -- Example 5.2 Binding Energy Per Nucleon -- Example 5.3 Nuclear Magic Numbers -- 5.1.5. The Nuclear (`Strong') Force -- 5.1.6. Nuclear Models -- 5.1.7. The Elementary Particles of Matter -- 5.2. Nuclear Radiations -- 5.2.1. The Nature of the Nuclear Radiations -- 5.2.2. Mechanisms of Nuclear Radiation Attenuation -- 5.2.3. Detectors of Ionising Radiation -- 5.2.4. The Biological Effects of Nuclear Radiation.
505 0 _aContents note continued: 5.3. Radioactivity, Neutrinos and the Standard Model -- 5.3.1. The Disintegration of Unstable Nuclei -- Example 5.4 Disintegration Energy -- 5.3.2. The Kinetics of Radioactive Disintegration -- Example 5.5 Radioactive Disintegration -- 5.3.3. Age Determination with Radioisotopes -- Example 5.6 Carbon-14 Dating -- 5.3.4. Uses of Radioisotopes -- Example 5.7 Dosimetry -- 5.3.5. The Factors Affecting Nuclear Stability -- Example 5.8 Possible Disintegration Modes of Heavy Nuclei -- 5.3.6. The Mechanism of [alpha] Decay -- 5.3.7. The Mechanism of [beta] Decay -- Weak Charge -- 5.4. Nuclear Reactions and Nuclear Energy -- 5.4.1. Nuclear Reactions -- 5.4.2. The Discovery of the Neutron -- 5.4.3. Nuclear Cross-Sections -- Example 5.9 Nuclear Cross-Sections -- 5.4.4. Nuclear Energy -- Fusion and Fission -- Example 5.10 Endoergic Nuclear Reactions -- 5.4.5. Nuclear Fusion -- 5.4.6. Nuclear Fission -- 5.4.7. Nuclear Chain Reactions -- 5.4.8. Fission by Fast Neutrons -- Bombs.
505 0 _aContents note continued: 5.4.9. Fission by Slow Neutrons -- Nuclear Reactors -- Example 5.11 The Slow Neutron Chain Reaction of Natural Uranium -- 5.4.10. Nuclear Engineering: The Chernobyl and Fukushima Catastrophes -- 5.5. Appendices to Part Five -- 5.5.1. The Mean Lifetime of a Radioactive Nucleus -- 5.5.2. Radioactive Decays of the Type A [b2s! B [b2s! C -- pt. Five Questions, Exercises and Problems -- pt. Six Selected Topics -- 6.1. The Laser -- 6.1.1. The Spontaneous and Stimulated Emission of Radiation -- 6.1.2. Laser Action -- 6.1.3. The Ruby Laser -- 6.1.4. The Helium-Neon Laser -- 6.1.5. Laser Applications -- 6.2. The Mossbauer Effect -- 6.2.1. The Width of Spectral Lines -- Example 6.1 The Width of Spectral Lines -- 6.2.2. The Mechanics of Photon Emission and Absorption -- 6.2.3. Recoilless Emission and Absorption -- 6.2.4. The Gravitational Shift -- Black Holes -- 6.3. Nuclear Magnetic Resonance -- 6.3.1. Magnetism and Angular Momentum -- 6.3.2. Nuclear Magnetic Moments.
505 0 _aContents note continued: 6.3.3. Nuclear Magnetic Resonance -- 6.3.4. Observing Nucleax Magnetic Resonance -- 6.3.5. Chemical Shift -- 6.3.6. Applications of Nuclear Magnetic Resonance -- 6.4. The Conduction of Electricity Through Solids -- 6.4.1. The Electrical Conductivity of Solids -- 6.4.2. The Electron Gas -- Example 6.2 The Relaxation Time of Conduction Electrons -- 6.4.3. Energy Levels in Solids -- Band Theory -- 6.4.4. Insulators -- 6.4.5. Metallic Conductors -- Example 6.3 The Velocity of Conducting Electrons -- Example 6.4 The Mean Path-length of the Conduction Electrons -- 6.4.6. Superconductivity -- 6.4.7. Semiconductors -- 6.4.8. The p-n Junction -- 6.4.9. Semiconductor Devices -- 6.5. Invariance, Symmetry and Conservation Laws -- 6.5.1. The Symmetry of the Laws of Physics -- 6.5.2. Group Theory -- 6.5.3. Noether's Theorem -- 6.5.4. The Conservation Laws of Particle Physics -- 6.6. Appendices to Part Six -- 6.6.1. The Probabilities of Stimulated and Spontaneous Emission.
505 0 _aContents note continued: pt. Six Questions, Exercises and Problems -- Supplementary Topics -- A. The Mathematical Description of Wave Motion -- A.1. The Principle of Superposition -- B. List of Physical Constants and Conversion Factors -- C. The Greek Alphabet.
650 0 _aPhysics
_vTextbooks.
650 0 _aPhysics
_vProblems, exercises, etc.
700 1 _aNir, Shlomo.
906 _a0
_bibc
_corigcop
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBOOKS
999 _c15388
_d15388