000 02340cam a2200361 i 4500
003 CUTN
005 20241001164122.0
008 130903s2014 flua b 001 0 eng
020 _a9781482216370
020 _a9781498774789
041 _aEnglish
042 _apcc
082 0 0 _a515.8
_223
100 1 _aKumar, Ajit,
100 1 _d1972-
245 1 2 _aA basic course in real analysis /
_cAjit Kumar, S. Kumaresan.
260 _aBoca Raton :
_bTaylor & Francis,
_c2014.
300 _axix, 302 pages :
_billustrations ;
_c24 cm
500 _a"A CRC title."
504 _aIncludes bibliographical references (page 297) and index.
505 _tNote continued: 5.4. Cauchy Product of Two Infinite Series 6.1. Darboux Integrability 6.2. Properties of the Integral 6.3. Fundamental Theorems of Calculus 6.4. Mean Value Theorems for Integrals 6.5. Integral Form of the Remainder 6.6. Riemann's Original Definition 6.7. Sum of an Infinite Series as an Integral 6.8. Logarithmic and Exponential Functions 6.9. Improper Riemann Integrals 7.1. Pointwise Convergence 7.2. Uniform Convergence 7.3. Consequences of Uniform Convergence 7.4. Series of Functions 7.5. Power Series 7.6. Taylor Series of a Smooth Function 7.7. Binomial Series 7.8. Weierstrass Approximation Theorem D.1. Chapter 1 D.2. Chapter 2 D.3. Chapter 3 D.4. Chapter 4 D.5. Chapter 5 D.6. Chapter 6 D.7. Chapter 7. Machine generated contents note
520 _aBased on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations
650 0 _aFunctions of real variables
650 0 _aMathematical analysis
650 0 _aNumbers, Real
650 0 _vTextbooks.
650 0 _vTextbooks.
650 0 _vTextbooks.
700 1 _aKumaresan, S.
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBOOKS
999 _c43670
_d43670