O'Hayre, Ryan P.,

Fuel cell fundamentals / Ryan O'Hayre, Suk-Won Cha, Whitney G. Colella, Fritz B. Prinz. - Third edition. - Hoboken, New Jersey : John Wiley & Sons Inc., 2016. - xx, 580 pages ; 25 cm

Includes bibliographical references (pages 555-564) index.

Title Page --
Copyright --
Table of Contents --
Dedication --
Preface --
Acknowledgments --
Nomenclature --
Part I: Fuel Cell Principles --
Chapter 1: Introduction --
1.1 What Is a Fuel Cell? --
1.2 A Simple Fuel Cell --
1.3 Fuel Cell Advantages --
1.4 Fuel Cell Disadvantages --
1.5 Fuel Cell Types --
1.6 Basic Fuel Cell Operation --
1.7 Fuel Cell Performance --
1.8 Characterization and Modeling --
1.9 Fuel Cell Technology --
1.10 Fuel Cells and the Environment --
1.11 Chapter Summary --
Chapter Exercises --
Chapter 2: Fuel Cell Thermodynamics --
2.1 Thermodynamics Review --
2.2 Heat Potential of a Fuel: Enthalpy of Reaction --
2.3 Work Potential of a Fuel: Gibbs Free Energy --
2.4 Predicting Reversible Voltage of a Fuel Cell under Non-Standard-State Conditions --
2.5 Fuel Cell Efficiency --
2.6 Thermal and Mass Balances in Fuel Cells --
2.7 Thermodynamics of Reversible Fuel Cells --
2.8 Chapter Summary --
Chapter Exercises --
Chapter 3: Fuel Cell Reaction Kinetics --
3.1 Introduction to Electrode Kinetics --
3.2 Why Charge Transfer Reactions Have an Activation Energy --
3.3 Activation Energy Determines Reaction Rate --
3.4 Calculating Net Rate of a Reaction --
3.5 Rate of Reaction at Equilibrium: Exchange Current Density --
3.6 Potential of a Reaction at Equilibrium: Galvani Potential --
3.7 Potential and Rate: Butler-Volmer Equation --
3.8 Exchange Currents and Electrocatalysis: How to Improve Kinetic Performance --
3.9 Simplified Activation Kinetics: Tafel Equation --
3.10 Different Fuel Cell Reactions Produce Different Kinetics --
3.11 Catalyst-Electrode Design --
3.12 Quantum Mechanics: Framework for Understanding Catalysis in Fuel Cells --
3.13 The Sabatier Principle for Catalyst Selection --
3.14 Connecting the Butler-Volmer and Nernst Equations (Optional) --
3.15 Chapter Summary --
Chapter Exercises. Chapter 4: Fuel Cell Charge Transport --
4.1 Charges Move in Response to Forces --
4.2 Charge Transport Results in a Voltage Loss --
4.3 Characteristics of Fuel Cell Charge Transport Resistance --
4.4 Physical Meaning of Conductivity --
4.5 Review of Fuel Cell Electrolyte Classes --
4.6 More on Diffusivity and Conductivity (Optional) --
4.7 Why Electrical Driving Forces Dominate Charge Transport (Optional) --
4.8 Quantum Mechanics-Based Simulation of Ion Conduction in Oxide Electrolytes (Optional) --
4.9 Chapter Summary --
Chapter Exercises --
Chapter 5: Fuel Cell Mass Transport --
5.1 Transport in Electrode versus Flow Structure --
5.2 Transport in Electrode: Diffusive Transport --
5.3 Transport in Flow Structures: Convective Transport --
5.4 Chapter Summary --
Chapter Exercises --
Chapter 6: Fuel Cell Modeling --
6.1 Putting It All Together: A Basic Fuel Cell Model --
6.2 A 1D Fuel Cell Model --
6.3 Fuel Cell Models Based on Computational Fluid Dynamics (Optional) --
6.4 Chapter Summary --
Chapter Exercises --
Chapter 7: Fuel Cell Characterization --
7.1 What Do We Want to Characterize? --
7.2 Overview of Characterization Techniques --
7.3 In Situ Electrochemical Characterization Techniques --
7.4 Ex Situ Characterization Techniques --
7.5 Chapter Summary --
Chapter Exercises --
Part II: Fuel Cell Technology --
Chapter 8: Overview of Fuel Cell Types --
8.1 Introduction --
8.2 Phosphoric Acid Fuel Cell --
8.3 Polymer Electrolyte Membrane Fuel Cell --
8.4 Alkaline Fuel Cell --
8.5 Molten Carbonate Fuel Cell --
8.6 Solid-Oxide Fuel Cell --
8.7 Other Fuel Cells --
8.8 Summary Comparison --
8.9 Chapter Summary --
Chapter Exercises --
Chapter 9: PEMFC and SOFC Materials --
9.1 PEMFC Electrolyte Materials --
9.2 PEMFC Electrode/Catalyst Materials --
9.3 SOFC Electrolyte Materials --
9.4 SOFC Electrode/Catalyst Materials. 9.5 Material Stability, Durability, and Lifetime --
9.6 Chapter Summary --
Chapter Exercises --
Chapter 10: Overview of Fuel Cell Systems --
10.1 Fuel Cell Subsystem --
10.2 Thermal Management Subsystem --
10.3 Fuel Delivery/Processing Subsystem --
10.4 Power Electronics Subsystem --
10.5 Case Study of Fuel Cell System Design: Stationary Combined Heat and Power Systems --
10.6 Case Study of Fuel Cell System Design: Sizing a Portable Fuel Cell --
10.7 Chapter Summary --
Chapter Exercises --
Chapter 11: Fuel Processing Subsystem Design --
11.1 Fuel Reforming Overview --
11.2 Water Gas Shift Reactors --
11.3 Carbon Monoxide Clean-Up --
11.4 Reformer and Processor Efficiency Losses --
11.5 Reactor Design for Fuel Reformers and Processors --
11.6 Chapter Summary --
Chapter Exercises --
Chapter 12: Thermal Management Subsystem Design --
12.1 Overview of Pinch Point Analysis Steps --
12.2 Chapter Summary --
Chapter Exercises --
Chapter 13: Fuel Cell System Design --
13.1 Fuel Cell Design Via Computational Fluid Dynamics --
13.2 Fuel Cell System Design: A Case Study --
13.3 Chapter Summary --
Chapter Exercises --
Chapter 14: Environmental Impact of Fuel Cells --
14.1 Life Cycle Assessment --
14.2 Important Emissions for LCA --
14.3 Emissions Related to Global Warming --
14.4 Emissions Related to Air Pollution --
14.5 Analyzing Entire Scenarios with LCA --
14.6 Chapter Summary --
Chapter Exercises --
Appendix A: Constants and Conversions --
Appendix B: Thermodynamic Data --
Appendix C: Standard Electrode Potentials at 25°C --
Appendix D: Quantum Mechanics --
D.1 Atomic Orbitals --
D.2 Postulates of Quantum Mechanics --
D.3 One-Dimensional Electron Gas --
D.4 Analogy to Column Buckling --
D.5 Hydrogen Atom --
D.6 Multielectron Systems --
D.7 Density Functional Theory --
Appendix E: Periodic Table of the Elements --
Appendix F: Suggested Further Reading. Appendix G: Important Equations --
Appendix H: Answers to Selected Chapter Exercises --
Bibliography --
Index --
End User License Agreement.

9781119113805 (cloth : acidfree paper)


Fuel cells--Textbooks.

621.312429 / OHA

Powered by Koha