Essentials of computational chemistry : (Record no. 24697)

MARC details
000 -LEADER
fixed length control field 15145cam a22003734a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CUTN
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20180412144835.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 040706s2004 enka b 001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780470091821
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0470091827 (pbk. : alk. paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0470091819 (cloth : alk. paper)
041 ## - LANGUAGE CODE
Language English
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 541.028
Edition number 22
Item number CRA
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Cramer, Christopher J.,
245 10 - TITLE STATEMENT
Title Essentials of computational chemistry :
Remainder of title theories and models /
Statement of responsibility, etc Christopher J. Cramer.
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Chichester, West Sussex, England ;
-- Hoboken, NJ :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc c2004.
300 ## - PHYSICAL DESCRIPTION
Extent xx, 596 p. :
Other physical details ill. ;
Dimensions 25 cm.
500 ## - GENERAL NOTE
General note Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.
505 ## - FORMATTED CONTENTS NOTE
Contents Preface to the First Edition. <br/>Preface to the Second Edition.<br/><br/><br/>Acknowledgments.<br/><br/><br/>1. What are Theory, Computation, and Modeling?<br/><br/><br/>1.1 Definition of Terms.<br/><br/><br/>1.2 Quantum Mechanics.<br/><br/><br/>1.3 Computable Quantities.<br/><br/><br/>1.3.1 Structure.<br/><br/><br/>1.3.2 Potential Energy Surfaces.<br/><br/><br/>1.3.3 Chemical Properties.<br/><br/><br/>1.4 Cost and Efficiency.<br/><br/><br/>1.4.1 Intrinsic Value.<br/><br/><br/>1.4.2 Hardware and Software.<br/><br/><br/>1.4.3 Algorithms.<br/><br/><br/>1.5 Note on Units.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>2..<br/><br/><br/>Molecular Mechanics.<br/><br/><br/>2.1 History and Fundamental Assumptions.<br/><br/><br/>2.2 Potential Energy Functional Forms.<br/><br/><br/>2.2.1 Bond Stretching.<br/><br/><br/>2.2.2 Valence Angle Bending.<br/><br/><br/>2.2.3 Torsions.<br/><br/><br/>2.2.4 van der Waals Interactions.<br/><br/><br/>2.2.5 Electrostatic Interactions.<br/><br/><br/>2.2.6 Cross Terms and Additional Non-bonded Terms.<br/><br/><br/>2.2.7 Parameterization Strategies.<br/><br/><br/>2.3 Force-field Energies and Thermodynamics.<br/><br/><br/>2.4 Geometry Optimization.<br/><br/><br/>2.4.1 Optimization Algorithms.<br/><br/><br/>2.4.2 Optimization Aspects Specific to Force Fields.<br/><br/><br/>2.5 Menagerie of Modern Force Fields.<br/><br/><br/>2.5.1 Available Force Fields.<br/><br/><br/>2.5.2 Validation.<br/><br/><br/>2.6 Force Fields and Docking.<br/><br/><br/>2.7 Case Study: (2Râ ,4Sâ )-1-Hydroxy-2,4-dimethylhex-5-ene.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>3. Simulations of Molecular Ensembles.<br/><br/><br/>3.1 Relationship Between MM Optima and Real Systems.<br/><br/><br/>3.2 Phase Space and Trajectories.<br/><br/><br/>3.2.1 Properties as Ensemble Averages.<br/><br/><br/>3.2.2 Properties as Time Averages of Trajectories.<br/><br/><br/>3.3 Molecular Dynamics.<br/><br/><br/>3.3.1 Harmonic Oscillator Trajectories.<br/><br/><br/>3.3.2 Non-analytical Systems.<br/><br/><br/>3.3.3 Practical Issues in Propagation.<br/><br/><br/>3.3.4 Stochastic Dynamics.<br/><br/><br/>3.4 Monte Carlo.<br/><br/><br/>3.4.1 Manipulation of Phase-space Integrals.<br/><br/><br/>3.4.2 Metropolis Sampling.<br/><br/><br/>3.5 Ensemble and Dynamical Property Examples.<br/><br/><br/>3.6 Key Details in Formalism.<br/><br/><br/>3.6.1 Cutoffs and Boundary Conditions.<br/><br/><br/>3.6.2 Polarization.<br/><br/><br/>3.6.3 Control of System Variables.<br/><br/><br/>3.6.4 Simulation Convergence.<br/><br/><br/>3.6.5 The Multiple Minima Problem.<br/><br/><br/>3.7 Force Field Performance in Simulations.<br/><br/><br/>3.8 Case Study: Silica Sodalite.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>4. Foundations of Molecular Orbital Theory.<br/><br/><br/>4.1 Quantum Mechanics and the Wave Function.<br/><br/><br/>4.2 The Hamiltonian Operator.<br/><br/><br/>4.2.1 General Features.<br/><br/><br/>4.2.2 The Variational Principle.<br/><br/><br/>4.2.3 The Born-Oppenheimer Approximation.<br/><br/><br/>4.3 Construction of Trial Wave Functions.<br/><br/><br/>4.3.1 The LCAO Basis Set Approach.<br/><br/><br/>4.3.2 The Secular Equation.<br/><br/><br/>4.4 Huckel Theory.<br/><br/><br/>4.4.1 Fundamental Principles.<br/><br/><br/>4.4.2 Application to the Allyl System.<br/><br/><br/>4.5 Many-electron Wave Functions.<br/><br/><br/>4.5.1 Hartree-product Wave Functions.<br/><br/><br/>4.5.2 The Hartree Hamiltonian.<br/><br/><br/>4.5.3 Electron Spin and Antisymmetry.<br/><br/><br/>4.5.4 Slater Determinants.<br/><br/><br/>4.5.5 The Hartree-Fock Self-consistent Field Method.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>5. Semiempirical Implementations of Molecular Orbital Theory..<br/><br/><br/>5.1 Semiempirical Philosophy.<br/><br/><br/>5.1.1 Chemically Virtuous Approximations.<br/><br/><br/>5.1.2 Analytic Derivatives.<br/><br/><br/>5.2 Extended Huckel Theory.<br/><br/><br/>5.3 CNDO Formalism.<br/><br/><br/>5.4 INDO Formalism.<br/><br/><br/>5.4.1 INDO and INDO/S.<br/><br/><br/>5.4.2 MINDO/3 and SINDO1.<br/><br/><br/>5.5 Basic NDDO Formalism.<br/><br/><br/>5.5.1 MNDO.<br/><br/><br/>5.5.2 AM1.<br/><br/><br/>5.5.3 PM3.<br/><br/><br/>5.6 General Performance Overview of Basic NDDO Models.<br/><br/><br/>5.6.1 Energetics.<br/><br/><br/>5.6.2 Geometries.<br/><br/><br/>5.6.3 Charge Distributions.<br/><br/><br/>5.7 Ongoing Developments in Semiempirical MO Theory.<br/><br/><br/>5.7.1 Use of Semiempirical Properties in SAR.<br/><br/><br/>5.7.2 d Orbitals in NDDO Models.<br/><br/><br/>5.7.3 SRP Models.<br/><br/><br/>5.7.4 Linear Scaling.<br/><br/><br/>5.7.5 Other Changes Functional Form.<br/><br/><br/>5.8 Case Study: Asymmetric Alkylation of Benzaldehyde.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>6. Ab Initio Implementations of Hartree-Fock Molecular Orbital.<br/><br/><br/>Theory.<br/><br/><br/>6.1 Ab Initio Philosophy.<br/><br/><br/>6.2 Basis Sets.<br/><br/><br/>6.2.1 Functional Forms.<br/><br/><br/>6.2.2 Contracted Gaussian Functions.<br/><br/><br/>6.2.3 Single-ζ, Multiple-ζ, and Split-Valence.<br/><br/><br/>6.2.4 Polarization Functions.<br/><br/><br/>6.2.5 Diffuse Functions.<br/><br/><br/>6.2.6 The HF Limit.<br/><br/><br/>6.2.7 Effective Core Potentials.<br/><br/><br/>6.2.8 Sources.<br/><br/><br/>6.3 Key Technical and Practical Points of Hartree-Fock Theory.<br/><br/><br/>6.3.1 SCF Convergence.<br/><br/><br/>6.3.2 Symmetry.<br/><br/><br/>6.3.3 Open-shell Systems.<br/><br/><br/>6.3.4 Efficiency of Implementation and Use.<br/><br/><br/>6.4 General Performance Overview of Ab Initio HF Theory.<br/><br/><br/>6.4.1 Energetics.<br/><br/><br/>6.4.2 Geometries.<br/><br/><br/>6.4.3 Charge Distributions.<br/><br/><br/>6.5 Case Study: Polymerization of 4-Substituted Aromatic Enynes.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>7. Including Electron Correlation in Molecular Orbital Theory.<br/><br/><br/>7.1 Dynamical vs. Non-dynamical Electron Correlation.<br/><br/><br/>7.2 Multiconfiguration Self-Consistent Field Theory.<br/><br/><br/>7.2.1 Conceptual Basis.<br/><br/><br/>7.2.2 Active Space Specification.<br/><br/><br/>7.2.3 Full Configuration Interaction.<br/><br/><br/>7.3 Configuration Interaction.<br/><br/><br/>7.3.1 Single-determinant Reference.<br/><br/><br/>7.3.2 Multireference.<br/><br/><br/>7.4 Perturbation Theory.<br/><br/><br/>7.4.1 General Principles.<br/><br/><br/>7.4.2 Single-reference.<br/><br/><br/>7.4.3 Multireference.<br/><br/><br/>7.4.4 First-order Perturbation Theory for Some Relativistic Effects.<br/><br/><br/>7.5 Coupled-cluster Theory.<br/><br/><br/>7.6 Practical Issues in Application.<br/><br/><br/>7.6.1 Basis Set Convergence.<br/><br/><br/>7.6.2 Sensitivity to Reference Wave Function.<br/><br/><br/>7.6.3 Price/Performance Summary.<br/><br/><br/>7.7 Parameterized Methods.<br/><br/><br/>7.7.1 Scaling Correlation Energies.<br/><br/><br/>7.7.2 Extrapolation.<br/><br/><br/>7.7.3 Multilevel Methods.<br/><br/><br/>7.8 Case Study: Ethylenedione Radical Anion.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>8. Density Functional Theory.<br/><br/><br/>8.1 Theoretical Motivation.<br/><br/><br/>8.1.1 Philosophy.<br/><br/><br/>8.1.2 Early Approximations.<br/><br/><br/>8.2 Rigorous Foundation.<br/><br/><br/>8.2.1 The Hohenberg-Kohn Existence Theorem.<br/><br/><br/>8.2.2 The Hohenberg-Kohn Variational Theorem.<br/><br/><br/>8.3 Kohn-Sham Self-consistent Field Methodology.<br/><br/><br/>8.4 Exchange-correlation Functionals.<br/><br/><br/>8.4.1 Local Density Approximation.<br/><br/><br/>8.4.2 Density Gradient and Kinetic Energy Density Corrections.<br/><br/><br/>8.4.3 Adiabatic Connection Methods.<br/><br/><br/>8.4.4 Semiempirical DFT.<br/><br/><br/>8.5 Advantages and Disadvantages of DFT Compared to MO Theory.<br/><br/><br/>8.5.1 Densities vs. Wave Functions.<br/><br/><br/>8.5.2 Computational Efficiency.<br/><br/><br/>8.5.3 Limitations of the KS Formalism.<br/><br/><br/>8.5.4 Systematic Improvability.<br/><br/><br/>8.5.5 Worst-case Scenarios.<br/><br/><br/>8.6 General Performance Overview of DFT.<br/><br/><br/>8.6.1 Energetics.<br/><br/><br/>8.6.2 Geometries.<br/><br/><br/>8.6.3 Charge Distributions.<br/><br/><br/>8.7 Case Study: Transition-Metal Catalyzed Carbonylation of Methanol.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>9. Charge Distribution and Spectroscopic Properties.<br/><br/><br/>9.1 Properties Related to Charge Distribution.<br/><br/><br/>9.1.1 Electric Multipole Moments.<br/><br/><br/>9.1.2 Molecular Electrostatic Potential.<br/><br/><br/>9.1.3 Partial Atomic Charges.<br/><br/><br/>9.1.4 Total Spin.<br/><br/><br/>9.1.5 Polarizability and Hyperpolarizability.<br/><br/><br/>9.1.6 ESR Hyperfine Coupling Constants.<br/><br/><br/>9.2 Ionization Potentials and Electron Affinities.<br/><br/><br/>9.3 Spectroscopy of Nuclear Motion.<br/><br/><br/>9.3.1 Rotational.<br/><br/><br/>9.3.2 Vibrational.<br/><br/><br/>9.4 NMR Spectral Properties.<br/><br/><br/>9.4.1 Technical Issues.<br/><br/><br/>9.4.2 Chemical Shifts and Spin-spin Coupling Constants.<br/><br/><br/>9.5 Case Study: Matrix Isolation of Perfluorinated p-Benzyne.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>10. Thermodynamic Properties.<br/><br/><br/>10.1 Microscopic-macroscopic Connection.<br/><br/><br/>10.2 Zero-point Vibrational Energy.<br/><br/><br/>10.3 Ensemble Properties and Basic Statistical Mechanics.<br/><br/><br/>10.3.1 Ideal Gas Assumption.<br/><br/><br/>10.3.2 Separability of Energy Components.<br/><br/><br/>10.3.3 Molecular Electronic Partition Function.<br/><br/><br/>10.3.4 Molecular Translational Partition Function.<br/><br/><br/>10.3.5 Molecular Rotational Partition Function.<br/><br/><br/>10.3.6 Molecular Vibrational Partition Function.<br/><br/><br/>10.4 Standard-state Heats and Free Energies of Formation and Reaction.<br/><br/><br/>10.4.1 Direct Computation.<br/><br/><br/>10.4.2 Parametric Improvement.<br/><br/><br/>10.4.3 Isodesmic Equations.<br/><br/><br/>10.5 Technical Caveats.<br/><br/><br/>10.5.1 Semiempirical Heats of Formation.<br/><br/><br/>10.5.2 Low-frequency Motions.<br/><br/><br/>10.5.3 Equilibrium Populations over Multiple Minima.<br/><br/><br/>10.5.4 Standard-state Conversions.<br/><br/><br/>10.5.5 Standard-state Free Energies, Equilibrium Constants, and Concentrations.<br/><br/><br/>10.6 Case Study: Heat of Formation of H2NOH.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>11. Implicit Models for Condensed Phases.<br/><br/><br/>11.1 Condensed-phase Effects on Structure and Reactivity.<br/><br/><br/>11.1.1 Free Energy of Transfer and Its Physical Components.<br/><br/><br/>11.1.2 Solvation as It Affects Potential Energy Surfaces.<br/><br/><br/>11.2 Electrostatic Interactions with a Continuum.<br/><br/><br/>11.2.1 The Poisson Equation.<br/><br/><br/>11.2.2 Generalized Born.<br/><br/><br/>11.2.3 Conductor-like Screening Model.<br/><br/><br/>11.3 Continuum Models for Non-electrostatic Interactions.<br/><br/><br/>11.3.1 Specific Component Models.<br/><br/><br/>11.3.2 Atomic Surface Tensions.<br/><br/><br/>11.4 Strengths and Weaknesses of Continuum Solvation Models.<br/><br/><br/>11.4.1 General Performance for Solvation Free Energies.<br/><br/><br/>11.4.2 Partitioning.<br/><br/><br/>11.4.3 Non-isotropic Media.<br/><br/><br/>11.4.4 Potentials of Mean Force and Solvent Structure.<br/><br/><br/>11.4.5 Molecular Dynamics with Implicit Solvent.<br/><br/><br/>11.4.6 Equilibrium vs. Non-equilibrium Solvation.<br/><br/><br/>11.5 Case Study: Aqueous Reductive Dechlorination of Hexachloroethane.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>12. Explicit Models for Condensed Phases.<br/><br/><br/>12.1 Motivation.<br/><br/><br/>12.2 Computing Free-energy Differences.<br/><br/><br/>12.2.1 Raw Differences.<br/><br/><br/>12.2.2 Free-energy Perturbation.<br/><br/><br/>12.2.3 Slow Growth and Thermodynamic Integration.<br/><br/><br/>12.2.4 Free-energy Cycles.<br/><br/><br/>12.2.5 Potentials of Mean Force.<br/><br/><br/>12.2.6 Technical Issues and Error Analysis.<br/><br/><br/>12.3 Other Thermodynamic Properties.<br/><br/><br/>12.4 Solvent Models.<br/><br/><br/>12.4.1 Classical Models.<br/><br/><br/>12.4.2 Quantal Models.<br/><br/><br/>12.5 Relative Merits of Explicit and Implicit Solvent Models.<br/><br/><br/>12.5.1 Analysis of Solvation Shell Structure and Energetics.<br/><br/><br/>12.5.2 Speed/Efficiency.<br/><br/><br/>12.5.3 Non-equilibrium Solvation.<br/><br/><br/>12.5.4 Mixed Explicit/Implicit Models.<br/><br/><br/>12.6 Case Study: Binding of Biotin Analogs to Avidin.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>13. Hybrid Quantal/Classical Models.<br/><br/><br/>13.1 Motivation.<br/><br/><br/>13.2 Boundaries Through Space.<br/><br/><br/>13.2.1 Unpolarized Interactions.<br/><br/><br/>13.2.2 Polarized QM/Unpolarized MM.<br/><br/><br/>13.2.3 Fully Polarized Interactions.<br/><br/><br/>13.3 Boundaries Through Bonds.<br/><br/><br/>13.3.1 Linear Combinations of Model Compounds.<br/><br/><br/>13.3.2 Link Atoms.<br/><br/><br/>13.3.3 Frozen Orbitals.<br/><br/><br/>13.4 Empirical Valence Bond Methods.<br/><br/><br/>13.4.1 Potential Energy Surfaces.<br/><br/><br/>13.4.2 Following Reaction Paths.<br/><br/><br/>13.4.3 Generalization to QM/MM.<br/><br/><br/>13.5 Case Study: Catalytic Mechanism of Yeast Enolase.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>14. Excited Electronic States.<br/><br/><br/>14.1 Determinantal/Configurational Representation of Excited States.<br/><br/><br/>14.2 Singly Excited States.<br/><br/><br/>14.2.1 SCF Applicability.<br/><br/><br/>14.2.2 CI Singles.<br/><br/><br/>14.2.3 Rydberg States.<br/><br/><br/>14.3 General Excited State Methods.<br/><br/><br/>14.3.1 Higher Roots in MCSCF and CI Calculations.<br/><br/><br/>14.3.2 Propagator Methods and Time-dependent DFT.<br/><br/><br/>14.4 Sum and Projection Methods.<br/><br/><br/>14.5 Transition Probabilities.<br/><br/><br/>14.6 Solvatochromism.<br/><br/><br/>14.7 Case Study: Organic Light Emitting Diode Alq3.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>15. Adiabatic Reaction Dynamics.<br/><br/><br/>15.1 Reaction Kinetics and Rate Constants.<br/><br/><br/>15.1.1 Unimolecular Reactions.<br/><br/><br/>15.1.2 Bimolecular Reactions.<br/><br/><br/>15.2 Reaction Paths and Transition States.<br/><br/><br/>15.3 Transition-state Theory.<br/><br/><br/>15.3.1 Canonical Equation.<br/><br/><br/>15.3.2 Variational Transition-state Theory.<br/><br/><br/>15.3.3 Quantum Effects on the Rate Constant.<br/><br/><br/>15.4 Condensed-phase Dynamics.<br/><br/><br/>15.5 Non-adiabatic Dynamics.<br/><br/><br/>15.5.1 General Surface Crossings.<br/><br/><br/>15.5.2 Marcus Theory.<br/><br/><br/>15.6 Case Study: Isomerization of Propylene Oxide.<br/><br/><br/>Bibliography and Suggested Additional Reading.<br/><br/><br/>References.<br/><br/><br/>Appendix A Acronym Glossary.<br/><br/><br/>Appendix B Symmetry and Group Theory.<br/><br/><br/>B.1 Symmetry Elements.<br/><br/><br/>B.2 Molecular Point Groups and Irreducible Representations.<br/><br/><br/>B.3 Assigning Electronic State Symmetries.<br/><br/><br/>B.4 Symmetry in the Evaluation of Integrals and Partition Functions.<br/><br/><br/>Appendix C Spin Algebra.<br/><br/><br/>C.1 Spin Operators.<br/><br/><br/>C.2 Pure- and Mixed-spin Wave Functions.<br/><br/><br/>C.3 UHF Wave Functions.<br/><br/><br/>C.4 Spin Projection/Annihilation.<br/><br/><br/>Reference.<br/><br/><br/>Appendix D Orbital Localization.<br/><br/><br/>D.1 Orbitals as Empirical Constructs.<br/><br/><br/>D.2 Natural Bond Orbital Analysis.<br/><br/><br/>References.<br/><br/><br/>Index.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Chemistry, Physical and theoretical
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Chemistry, Physical and theoretical
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type General Books
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/toc/wiley051/2004015537.html">http://www.loc.gov/catdir/toc/wiley051/2004015537.html</a>
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/enhancements/fy0616/2004015537-b.html">http://www.loc.gov/catdir/enhancements/fy0616/2004015537-b.html</a>
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/enhancements/fy0616/2004015537-d.html">http://www.loc.gov/catdir/enhancements/fy0616/2004015537-d.html</a>
100 1# - MAIN ENTRY--PERSONAL NAME
Dates associated with a name 1961-
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Data processing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Mathematical models.
856 41 - ELECTRONIC LOCATION AND ACCESS
Materials specified Table of contents only
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Contributor biographical information
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Publisher description
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Location Shelving location Date of Cataloging Total Checkouts Full call number Barcode Checked out Date last seen Date checked out Price effective from Koha item type Public note
    Dewey Decimal Classification     Non-fiction CUTN Central Library CUTN Central Library Sciences 12/04/2018 1 541.028 CRA 31119 20/05/2020 20/05/2020 20/05/2020 12/04/2018 General Books Transferred to Dr.P.Ravindran

Powered by Koha