Theoretical physics. (Record no. 44126)

MARC details
000 -LEADER
fixed length control field 10181cam a22003137a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CUTN
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250328150700.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 100909s2011 gw a b 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783662601310 (alk. paper)
041 ## - LANGUAGE CODE
Language English
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 531.015
Edition number 23
Item number DRE
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Dreizler, Reiner M.
245 10 - TITLE STATEMENT
Title Theoretical physics.
Statement of responsibility, etc Reiner M. Dreizler, Cora S. Lüdde.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Heidelberg
-- New York :
Name of publisher, distributor, etc Springer,
Date of publication, distribution, etc c2010.
300 ## - PHYSICAL DESCRIPTION
Extent ix, 402 p. :
Other physical details ill. ;
Dimensions 24 cm.
505 ## - FORMATTED CONTENTS NOTE
Title 1 A First Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.1 One-dimensional motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.1.1 Three examples for the motion in one space dimension 14<br/>2.1.2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>2.1.3 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.1.4 First remarks concerning dynamical aspects . . . . . . . . . 25<br/>2.2 Problems of motion in two or three dimensions . . . . . . . . . . . . . 27<br/>2.2.1 Two-dimensional motion . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>2.2.2 Motion in three spatial dimensions . . . . . . . . . . . . . . . . . 36<br/>2.2.3 An example for the determination of trajectories in<br/>two space dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>2.3 Vectorial formulation of problems of motion. . . . . . . . . . . . . . . . 40<br/>2.3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>2.3.2 Vectorial description of motion . . . . . . . . . . . . . . . . . . . . . 43<br/>2.3.3 Area theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>2.4 Curvilinear coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>2.4.1 Coordinates in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>2.4.2 Spatial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br/>3 Dynamics I: Axioms and Conservation Laws . . . . . . . . . . . . . . 67<br/>3.1 The axioms of mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>3.1.1 The concept of force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>3.1.2 Inertial and gravitational mass . . . . . . . . . . . . . . . . . . . . . 69<br/>3.1.3 The axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br/>3.1.4 The first axiom: inertial systems. . . . . . . . . . . . . . . . . . . . 72<br/>3.1.5 The second axiom: momentum . . . . . . . . . . . . . . . . . . . . . 76<br/>3.1.6 The third axiom: interactions . . . . . . . . . . . . . . . . . . . . . . 77<br/>3.2 The conservation laws of mechanics . . . . . . . . . . . . . . . . . . . . . . . 84<br/>3.2.1 The momentum principle and momentum conservation 84<br/>3.2.2 The angular momentum principle and angular momentum<br/>conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br/>3.2.3 Energy and energy conservation for a mass point . . . . . 102<br/>3.2.4 Energy conservation for a system of mass points . . . . . . 122<br/>3.2.5 Application: collision problems . . . . . . . . . . . . . . . . . . . . . 130<br/>4 Dynamics II: Problems of Motion. . . . . . . . . . . . . . . . . . . . . . . . . 139<br/>4.1 Kepler’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br/>4.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br/>4.1.2 Planetary motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br/>4.1.3 Comets and meteorites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br/>4.2 Oscillator problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br/>4.2.1 The mathematical pendulum. . . . . . . . . . . . . . . . . . . . . . . 161<br/>4.2.2 The damped harmonic oscillator . . . . . . . . . . . . . . . . . . . 169<br/>4.2.3 Forced oscillations: harmonic restoring forces . . . . . . . . . 173<br/>4.2.4 Forced oscillations: general excitations . . . . . . . . . . . . . . 180<br/>5 General Formulation of the Mechanics of Point Particles . . 185<br/>5.1 Lagrange I: the Lagrange equations of the first kind . . . . . . . . . 186<br/>5.1.1 Examples for the motion under constraints . . . . . . . . . . 186<br/>5.1.2 Lagrange I for one point particle . . . . . . . . . . . . . . . . . . . 192<br/>5.2 D’Alembert’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br/>5.2.1 D’Alembert’s principle for one mass point . . . . . . . . . . . 204<br/>5.2.2 D’Alembert’s principle for systems of point particles . . 209<br/>5.3 The Lagrange equations of the<br/>5.3.1 Lagrange II for one point particle . . . . . . . . . . . . . . . . . . . 214<br/>5.3.2 Lagrange II and conservation laws for one point particle 231<br/>5.3.3 Lagrange II for a system of mass points . . . . . . . . . . . . . 241<br/>5.4 Hamilton’s formulation of mechanics . . . . . . . . . . . . . . . . . . . . . 246<br/>5.4.1 Hamilton’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br/>5.4.2 Hamilton’s equation of motion . . . . . . . . . . . . . . . . . . . . . 254<br/>5.4.3 A cursory look into phase space . . . . . . . . . . . . . . . . . . . . 262<br/>6 Application of the Lagrange Formalism . . . . . . . . . . . . . . . . . . . 271<br/>6.1 Coupled harmonic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br/>6.1.1 Coupled oscillating system: two masses and three springs 272<br/>6.1.2 Beats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276<br/>6.1.3 The linear oscillator chain . . . . . . . . . . . . . . . . . . . . . . . . . 278<br/>6.1.4 The differential equation of an oscillating string . . . . . . 290<br/>6.2 Rotating coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294<br/>6.2.1 Simple manifestation of apparent forces . . . . . . . . . . . . . 295<br/>6.2.2 General discussion of apparent forces in rotating coordinate<br/>systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297<br/>6.2.3 Apparent forces and the rotating earth . . . . . . . . . . . . . . 305<br/>6.3 The motion of rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br/>6.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br/>6.3.2 The kinetic energy of rigid bodies . . . . . . . . . . . . . . . . . . 316<br/>6.3.3 The structure of the inertia matrix . . . . . . . . . . . . . . . . . 322<br/>6.3.4 The angular momentum of a rigid body . . . . . . . . . . . . . 332<br/>6.3.5 The Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334<br/>6.3.6 The equations of motion for the rotation of a rigid body 337<br/>6.3.7 Rotational motion of rigid bodies . . . . . . . . . . . . . . . . . . . 340<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369<br/>. . . . . . . . . . . . . . 373<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377<br/>F.1 Plane Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377<br/>F.2 Cylinder Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378<br/>F.3 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378<br/>F.4 Sum Formulae / Moivre Formula . . . . . . . . . . . . . . . . . . . . . . . . . 379<br/>F.5 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380<br/>F.6 Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380<br/>F.7 Approximations (δ small) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380<br/>Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
520 ## - SUMMARY, ETC.
Summary, etc This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mechanics, Analytic.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Lüdde, Cora S.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type General Books
245 10 - TITLE STATEMENT
Number of part/section of a work 1
Name of part/section of a work Theoretical mechanics /
246 10 - VARYING FORM OF TITLE
Title proper/short title Theoretical mechanics
490 0# - SERIES STATEMENT
Series statement Graduate texts in physics,
International Standard Serial Number 1868-4513
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references (p. [353]-356) and index.
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Location Shelving location Date of Cataloging Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Non-fiction CUTN Central Library CUTN Central Library Sciences 28/03/2025   531.015 DRE 51325 28/03/2025 28/03/2025 General Books