Epidemiology with R / (Record no. 44142)

MARC details
000 -LEADER
fixed length control field 08137cam a22004215i 4500
003 - CONTROL NUMBER IDENTIFIER
control field CUTN
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250402151316.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 200720s2021 enka b 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0198841337
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780198841333
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780198841326
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0198841329
041 ## - LANGUAGE CODE
Language English
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
060 #4 - NATIONAL LIBRARY OF MEDICINE CALL NUMBER
Classification number WA 950
Item number .C321e 2021
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 614.407
Edition number 23
Item number CAR
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Carstensen, Bendix,
245 10 - TITLE STATEMENT
Title Epidemiology with R /
Statement of responsibility, etc Bendix Carstensen.
250 ## - EDITION STATEMENT
Edition statement First edition.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc UK :
Name of publisher, distributor, etc OUP Oxford,
Date of publication, distribution, etc 2021.
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 231 pages :
Other physical details illustrations ;
Dimensions 25 cm
505 ## - FORMATTED CONTENTS NOTE
Title Epidemiology with R<br/>Copyright<br/>Contents<br/>Preface<br/>What this book is not<br/>Acknowledgements<br/>List of Figures<br/>Introduction<br/>What you should do<br/>Code chunks<br/>Graphs in this book<br/>Practicing R<br/>Chapter 1: Using R<br/>1.1 Installing and using R<br/>1.2 Documenting your code and results<br/>1.2.1 R markdown<br/>1.2.2 Sweave / knitr<br/>1.2.3 Coding style in R<br/>1.2.4 R lingo<br/>1.3 Simple usage of R<br/>1.3.1 Using R as a calculator<br/>1.3.2 A functional language<br/>Probability functions<br/>Objects and functions<br/>What makes R different: functions<br/>1.3.3 Sequences<br/>1.3.4 The births data<br/>1.3.5 Referencing parts of a data frame<br/>1.3.6 Summaries<br/>1.3.7 Generating new variables<br/>1.3.8 Logical variables<br/>1.3.9 Turning a variable into a factor<br/>Manipulating factor levels<br/>Grouping values of a quantitative variable<br/>1.3.10 Tables<br/>Tables of means and other things<br/>1.3.11 Reading data<br/>1.3.12 Saving data<br/>Saving the work space<br/>Saving R objects in a file<br/>1.3.13 The search path<br/>Attaching a data frame<br/>Using with<br/>1.4 Graphics<br/>1.4.1 ggplot2<br/>1.4.2 Base graphics<br/>1.4.3 Simple base graphs<br/>Plot on the screen<br/>Colours<br/>Adding to a plot<br/>Using indexing for plot elements<br/>Interacting with a plot<br/>Saving graphs for use in other documents<br/>Same graph on multiple devices<br/>The par() command<br/>1.5 Frequency data<br/>1.5.1 Graphical overview<br/>1.5.2 Ad hoc analyses of admissions<br/>1.6 Tables and arrays for results<br/>1.7 Dates in R<br/>1.8 Numerical accuracy<br/>1.8.1 Accuracy of matching variables<br/>1.9 tidyverse and data.table<br/>Chapter 2: Measures of disease occurrence<br/>2.1 Prevalence<br/>2.2 Mortality rate<br/>2.3 Incidence rate<br/>2.4 Standardized mortality ratio<br/>2.5 Survival<br/>2.5.1 Cumulative risk<br/>2.5.2 Competing risks<br/>2.5.3 Sojourn time<br/>Chapter 3: Prevalence data—models, likelihood, and binomial regression<br/>3.1 Likelihood<br/>3.1.1 A single probability<br/>3.1.2 Simple confidence interval<br/>3.1.3 Confidence intervals in general<br/>3.1.4 The normal distribution<br/>3.1.5 Simple confidence intervals from models<br/>3.1.6 Tests and p-values<br/>3.2 Prevalence by age<br/>3.3 Comparing different models for the same data<br/>3.3.1 Likelihood-ratio test<br/>3.3.2 Deviance<br/>3.3.3 Deviance and goodness of fit<br/>3.3.4 AIC and BIC<br/>Chapter 4: Regression models<br/>4.1 Types of models<br/>4.2 Normal linear regression model<br/>4.3 Simple linear regression<br/>4.4 Multiple regression<br/>4.4.1 Estimation in the normal linear regression model<br/>4.4.2 R-squared<br/>4.4.3 Multiple regression<br/>4.4.4 Standardized variables<br/>4.4.5 Predictions from the normal regression model<br/>4.5 Model formulae in R<br/>4.6 Regression models and generalized linear models<br/>4.6.1 Categorical effects<br/>4.6.2 Linear and categorical effects<br/>4.6.3 ANOVA–ANCOVA<br/>4.6.4 Categorical-linear interaction<br/>Special interaction?<br/>4.6.5 Categorical by categorical interaction<br/>4.7 Collinearity and aliasing<br/>4.8 Logarithmic transformations<br/>4.8.1 Logarithms<br/>4.8.2 Log transform of the response variable<br/>4.8.3 Coefficient of variation<br/>4.8.4 Log transform of an explanatory variable<br/>4.8.5 Log transform of both the response and explanatory variables<br/>Chapter 5: Analysis of follow-up data<br/>5.1 Basic data structure<br/>5.2 Probability model<br/>5.2.1 Data<br/>5.2.2 Likelihood for a rate<br/>5.2.3 Estimates of rates and rate ratios<br/>5.3 Representation of follow-up data<br/>5.3.1 Lexis object for follow-up data<br/>Scaling of Lexis diagrams<br/>5.4 Splitting the follow-up time along a time-scale<br/>5.5 Smooth age-effects for rates<br/>5.5.1 Disaggregated data<br/>5.5.2 Including sex in the model<br/>5.6 SMR<br/>5.6.1 Modelling the SMR<br/>5.7 Time-dependent variables<br/>5.7.1 Cutting time at a specific date<br/>The precursor states<br/>5.7.2 Modelling time-dependent variables<br/>Survival?<br/>5.7.3 Clinical measurements in cohort studies<br/>Analysis using clinical measurements<br/>Chapter 6: Parametrization and prediction of rates<br/>6.1 Predictions and contrasts<br/>6.2 Prediction of a single rate<br/>6.3 Categorical variables<br/>6.3.1 Groups and rate ratios<br/>Comparing all groups<br/>6.4 Modelling the effect of quantitative variables<br/>6.4.1 Categorizing quantitative variables: don’t<br/>6.4.2 Linear effect<br/>Predicting the rates<br/>6.4.3 Polynomial effects<br/>6.4.4 Other types of non-linear effects<br/>Natural splines<br/>Penalized splines<br/>6.5 Two quantitative predictors<br/>6.5.1 Age and period<br/>6.5.2 Age and cohort<br/>6.5.3 Contours of joint effects<br/>Image plot / heatmap<br/>6.6 Quantitative interactions<br/>6.6.1 Age–period interaction<br/>Age-specific rates at different dates (periods)<br/>Period-specific rates at different ages<br/>6.6.2 Age and cohort interaction<br/>6.6.3 Parametric interaction models<br/>6.6.4 Varying coefficients models for interaction<br/>6.6.5 Summary of quantitative interactions<br/>Chapter 7: Case-control and case-cohort studies<br/>7.1 Follow-up and case-control studies<br/>7.1.1 Probabilities and odds in case-control studies<br/>7.1.2 The sampling fractions<br/>7.1.3 A simple example<br/>7.2 Statistical model for the odds ratio<br/>7.2.1 Analysis by logistic regression<br/>7.3 Odds ratio and rate ratio<br/>7.3.1 Incidence density sampling<br/>7.4 Confounding and stratified sampling<br/>7.4.1 Stratified sampling<br/>7.5 Individually matched studies<br/>7.5.1 An example<br/>7.5.2 When conditional analysis is not needed<br/>7.6 Nested case-control studies<br/>7.6.1 Register-based case-control studies<br/>7.7 Case-cohort studies<br/>Chapter 8: Survival analysis<br/>8.1 Introduction<br/>8.2 Life table estimator of survival function<br/>8.3 Kaplan--Meier estimator of survival<br/>8.3.1 Survival in two groups<br/>8.4 The Cox model<br/>8.4.1 Mean survival or survival at mean?<br/>8.5 The time-scale<br/>8.6 Relation between Cox and Poisson models<br/>8.6.1 Simple parametric mortality functions<br/>Baseline mortality rate<br/>Survival curves<br/>8.6.2 Proportional hazards?<br/>8.6.3 The Cox model as a Poisson model<br/>8.7 Time-dependent covariates<br/>8.8 Competing risks<br/>8.9 Modelling cause specific rates<br/>8.9.1 Limitations<br/>8.10 The Fine--Gray approach to competing risks<br/>8.11 Time-dependent variables and competing risks<br/>Chapter 9: Do not group quantitative variables<br/>9.1 Problems Caused by Categorizing Continuous Variables<br/>References<br/>Index<br/>
520 ## - SUMMARY, ETC.
Summary, etc Epidemiology with R<br/>This practical guide is designed for students and researchers with an existing knowledge of R who wish to learn how to apply it in an epidemiological context and exploit its versatility. It also serves as a broader introduction to the quantitative aspects of modern practical epidemiology. The standard tools used in epidemiology are described and the practical use of R for these is clearly explained and laid out. R code examples, many with output, are embedded throughout the text. The entire code is also available on the companion website so that readers can reproduce all the results and graphs featured in the book. Epidemiology with R is an advanced textbook suitable for senior undergraduate and graduate students, professional researchers, and practitioners in the fields of human and non-human epidemiology, public health, veterinary science, and biostatistics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Epidemiology
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element R (Computer program language)
650 #2 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Epidemiology
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Epidemiology
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element R (Computer program language)
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type General Books
100 1# - MAIN ENTRY--PERSONAL NAME
Relator term author.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Statistical methods.
650 #2 - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Statistics.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Statistical methods.
Source of heading or term fast
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Source of heading or term fast
9 (RLIN) 4
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 0
b ibc
c copycat
d 2
e ncip
f 20
g y-gencatlg
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Location Shelving location Date of Cataloging Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Non-fiction CUTN Central Library CUTN Central Library Medicine, Technology & Management 02/04/2025   614.407 CAR 52031 02/04/2025 02/04/2025 General Books