Amazon cover image
Image from Amazon.com
Image from Google Jackets

Stochastic Optimization Methods [electronic resource]

By: Material type: TextPublication details: New York : Springer June 2008Edition: 2nd edISBN:
  • 9783540794578
  • 3540794573 (Trade Cloth)
DDC classification:
  • 519.62 22
LOC classification:
  • QA402.S
Online resources: SpringerLink ebooks - Business and Economics (2008)Annotation Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
General Books CUTN Central Library Sciences 519.62 (Browse shelf(Opens below)) 1 Available 10695

License restrictions may limit access.

Annotation Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.

College Audience Springer

There are no comments on this title.

to post a comment.