Amazon cover image
Image from Amazon.com
Image from Google Jackets

Essential mathematics for economics / Alexis Akira Toda, Emory University, USA.

By: Material type: TextTextLanguage: English Publication details: Chapman & Hall, 2025.Edition: First editionDescription: 308 Pages : 36 B/W IllustrationsISBN:
  • 9781032698953
  • 1032698950
  • 9781040133866
  • 104013386X
  • 9781040133842
  • 1040133843
Subject(s): DDC classification:
  • 330.015 23/eng/20240911 TOD
Online resources:
Contents:
0. Roadmap. Section I. Introduction to Optimization. 1. Existence of Solutions. 1.1. Introduction. 1.2. The Real Number System. 1.3. Convergence of Sequences. 1.4. The Space rn. 1.5. Topology of rn. 1.6. Continuous Functions. 1.7. Extreme Value Theorem. 1.A. Topological Space. 2. One-Variable Optimization. 2.1. Introduction. 2.2. Differentiation. 2.3. Necessary Condition. 2.4. Mean Value and Taylor’s Theorem. 2.5. Sufficient Condition. 2.6. Optimal Savings Problem. 3. Multi-Variable Unconstrained Optimization. 3.1. Introduction. 3.2. Linear Maps and Matrices. 3.3. Differentiation. 3.4. Chain Rule. 3.5. Necessary Condition. 4. Introduction to Constrained Optimization. 4.1. Introduction. 4.2. One Linear Constraint. 4.3. Multiple Linear Constraints. 4.4. Karush-Kuhn-Tucker Theorem. 4.5. Inequality and Equality Constraints. 4.6. Constrained Maximization. 4.7. Dropping Nonnegativity Constraints. Section II. Matrix and Nonlinear Analysis. 5. Vector Space, Matrix, and Determinant. 5.1. Introduction. 5.2. Vector Space. 5.3. Solving Linear Equations. 5.4. Determinant. 6. Spectral Theory. 6.1. Introduction. 6.2. Eigenvalue and Eigenvector. 6.3. Diagonalization. 6.4. Inner Product and Norm. 6.5. Upper Triangularization. 6.6. Positive Definite Matrices. 6.7. Second-Order Optimality Condition. 6.8. Matrix Norm and Spectral Radius. 7. Metric Space and Contraction. 7.1. Metric Space. 7.2. Completeness and Banach Space. 7.3. Contraction Mapping Theorem. 7.4. Blackwell’s Sufficient Condition. 7.5. Perov Contraction. 7.6. Parametric Continuity of Fixed Point. 8. Implicit Function and Stable Manifold Theorem. 8.1. Introduction. 8.2. Inverse Function Theorem. 8.3. Implicit Function Theorem. 8.4. Optimal Savings Problem. 8.5. Optimal Portfolio Problem. 8.6. Stable Manifold Theorem. 8.7. Overlapping Generations Model. 9. Nonnegative Matrices. 9.1. Introduction. 9.2. Markov Chain. 9.3. Perron’s Theorem. 9.4. Irreducible Nonnegative Matrices. 9.5. Metzler Matrices. Section III. Convex and Nonlinear Optimization. 10. Convex Sets. 10.1. Convex Sets. 10.2. Convex Hull. 10.3. Hyperplanes and Half Spaces. 10.4. Separation of Convex Sets. 10.5. Cone and Dual Cone. 10.6. No-Arbitrage Asset Pricing. 11. Convex Functions. 11.1. Convex and Quasi-Convex Functions. 11.2. Convexity-Preserving Operations. 11.3. Differential Characterization. 11.4. Continuity of Convex Functions. 11.5. Homogeneous Quasi-Convex Functions. 11.6. Log-Convex Functions. 12. Nonlinear Programming. 12.1. Introduction. 12.2. Necessary Condition. 12.3. Karush-Kuhn-Tucker Theorem. 12.4. Constraint Qualifications. 12.5. Saddle Point Theorem. 12.6. Duality. 12.7. Sufficient Conditions. 12.8. Parametric Differentiability. 12.9. Parametric Continuity. Section IV. Dynamic Optimization. 13. Introduction to Dynamic Programming. 13.1. Introduction. 13.2. Knapsack Problem. 13.3. Shortest Path Problem. 13.4. Optimal Savings Problem. 13.5. Optimal Stopping Problem. 13.6. Secretary Problem. 13.7. Abstract Formulation. 14. Contraction Methods. 14.1. Introduction. 14.2. Markov Dynamic Program. 14.3. Sequential and Recursive Formulations. 14.4. Properties of Value Function. 14.5. Restricting Spaces. 14.6. State-Dependent Discounting. 14.7. Weighted Supremum Norm. 14.8. Numerical Dynamic Programming. 15. Variational Methods. 15.1. Introduction. 15.2. Euler Equation. 15.3. Transversality Condition. 15.4. Stochastic Case. 15.5. Optimal Savings Problem.
Summary: "Essential Mathematics for Economics covers mathematical topics that are essential for economic analysis in a concise but rigorous fashion. The book covers selected topics such as linear algebra, real analysis, convex analysis, constrained optimization, dynamic programming, and numerical analysis in a single volume. The book is entirely self-contained, and almost all propositions are proved"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
General Books General Books CUTN Central Library Social Sciences Non-fiction 330.015 TOD (Browse shelf(Opens below)) Available 54574

0. Roadmap. Section I. Introduction to Optimization. 1. Existence of Solutions. 1.1. Introduction. 1.2. The Real Number System. 1.3. Convergence of Sequences. 1.4. The Space rn. 1.5. Topology of rn. 1.6. Continuous Functions. 1.7. Extreme Value Theorem. 1.A. Topological Space. 2. One-Variable Optimization. 2.1. Introduction. 2.2. Differentiation. 2.3. Necessary Condition. 2.4. Mean Value and Taylor’s Theorem. 2.5. Sufficient Condition. 2.6. Optimal Savings Problem. 3. Multi-Variable Unconstrained Optimization. 3.1. Introduction. 3.2. Linear Maps and Matrices. 3.3. Differentiation. 3.4. Chain Rule. 3.5. Necessary Condition. 4. Introduction to Constrained Optimization. 4.1. Introduction. 4.2. One Linear Constraint. 4.3. Multiple Linear Constraints. 4.4. Karush-Kuhn-Tucker Theorem. 4.5. Inequality and Equality Constraints. 4.6. Constrained Maximization. 4.7. Dropping Nonnegativity Constraints. Section II. Matrix and Nonlinear Analysis. 5. Vector Space, Matrix, and Determinant. 5.1. Introduction. 5.2. Vector Space. 5.3. Solving Linear Equations. 5.4. Determinant. 6. Spectral Theory. 6.1. Introduction. 6.2. Eigenvalue and Eigenvector. 6.3. Diagonalization. 6.4. Inner Product and Norm. 6.5. Upper Triangularization. 6.6. Positive Definite Matrices. 6.7. Second-Order Optimality Condition. 6.8. Matrix Norm and Spectral Radius. 7. Metric Space and Contraction. 7.1. Metric Space. 7.2. Completeness and Banach Space. 7.3. Contraction Mapping Theorem. 7.4. Blackwell’s Sufficient Condition. 7.5. Perov Contraction. 7.6. Parametric Continuity of Fixed Point. 8. Implicit Function and Stable Manifold Theorem. 8.1. Introduction. 8.2. Inverse Function Theorem. 8.3. Implicit Function Theorem. 8.4. Optimal Savings Problem. 8.5. Optimal Portfolio Problem. 8.6. Stable Manifold Theorem. 8.7. Overlapping Generations Model. 9. Nonnegative Matrices. 9.1. Introduction. 9.2. Markov Chain. 9.3. Perron’s Theorem. 9.4. Irreducible Nonnegative Matrices. 9.5. Metzler Matrices. Section III. Convex and Nonlinear Optimization. 10. Convex Sets. 10.1. Convex Sets. 10.2. Convex Hull. 10.3. Hyperplanes and Half Spaces. 10.4. Separation of Convex Sets. 10.5. Cone and Dual Cone. 10.6. No-Arbitrage Asset Pricing. 11. Convex Functions. 11.1. Convex and Quasi-Convex Functions. 11.2. Convexity-Preserving Operations. 11.3. Differential Characterization. 11.4. Continuity of Convex Functions. 11.5. Homogeneous Quasi-Convex Functions. 11.6. Log-Convex Functions. 12. Nonlinear Programming. 12.1. Introduction. 12.2. Necessary Condition. 12.3. Karush-Kuhn-Tucker Theorem. 12.4. Constraint Qualifications. 12.5. Saddle Point Theorem. 12.6. Duality. 12.7. Sufficient Conditions. 12.8. Parametric Differentiability. 12.9. Parametric Continuity. Section IV. Dynamic Optimization. 13. Introduction to Dynamic Programming. 13.1. Introduction. 13.2. Knapsack Problem. 13.3. Shortest Path Problem. 13.4. Optimal Savings Problem. 13.5. Optimal Stopping Problem. 13.6. Secretary Problem. 13.7. Abstract Formulation. 14. Contraction Methods. 14.1. Introduction. 14.2. Markov Dynamic Program. 14.3. Sequential and Recursive Formulations. 14.4. Properties of Value Function. 14.5. Restricting Spaces. 14.6. State-Dependent Discounting. 14.7. Weighted Supremum Norm. 14.8. Numerical Dynamic Programming. 15. Variational Methods. 15.1. Introduction. 15.2. Euler Equation. 15.3. Transversality Condition. 15.4. Stochastic Case. 15.5. Optimal Savings Problem.

Access restricted to subscribing institutions.

"Essential Mathematics for Economics covers mathematical topics that are essential for economic analysis in a concise but rigorous fashion. The book covers selected topics such as linear algebra, real analysis, convex analysis, constrained optimization, dynamic programming, and numerical analysis in a single volume. The book is entirely self-contained, and almost all propositions are proved"--

There are no comments on this title.

to post a comment.